IPN Progress Report 42-154 August 15, 2003

Non-Parametric Evaluation of Lifetime Data

J. Shell!

The proposed large array of small receiving stations for the DSN requires very
reliable systems. Reliability can be estimated from life tests of the critical com-
ponents of the system. This article is a tutorial discussion of the application of a
non-parametric approach, known as the product-limit estimate, to lifetime data.

l. Introduction

The development of a very large array of small antennas for the DSN is under consideration. The
proposed array may contain thousands of receiving stations, with initial estimates of 3,600 at each of
three longitudes. As currently envisioned, each station will use a closed-cycle refrigerator (CCR) to cool
the low-noise amplifiers and microwave feed components. To aid in the selection process, some statistical
methods of evaluating the CCR reliability are necessary. If lifetime data are not available from the
manufacturer, a statistically significant number of coolers should be purchased for lifetime evaluation. If
an accelerated life test is required, the methods described in this article may be applied to the components
of the CCR thought to be critical to its lifetime. In that case, some further analysis must be done to
derive the overall system reliability from the component reliability.

This article discusses one approach that might be used to evaluate lifetime data. It is a non-parametric,
sometimes called distribution-free, evaluation of the survivor function. We will use the term “survivor
function” rather than the equivalent term “reliability function.” This method is widely used in biomedical
applications. Non-parametric methods, unlike parametric methods, are not designed around a particular
probability distribution. This is advantageous if the population under investigation does not follow a
particular distribution. A good statistical analysis may well include both parametric and non-parametric
approaches.

We assume the CCR manufacturer can produce thousands of nearly identical units (or components)
whose lifetimes will have some variation. These may be due to materials or manufacturing process vari-
ations. It is desired to estimate the survivability of the production line population from the survivability
of samples drawn from it. In addition to calculating the survivor function, we will address the calculation
of confidence intervals and mean lifetime. An attempt has been made to keep the formalism as general
as possible. Another goal has been to rely heavily on graphing of the data. Graphs are a useful way of
presenting the data, especially if one is looking for trends. We also briefly discuss the problem of multiple
causes of failure, sometimes referred to as the competing risk problem.
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The organization of the article is the following. Section II discusses censoring and other basic defini-
tions and concepts of reliability theory. Section III discusses the product-limit estimate for the survivor
function. Section IV discusses the confidence interval, and Section V discusses the restricted mean life-
time. Section VI presents an introduction to the analysis of multiple causes of failure. Section VII gives
examples of the formalism discussed in the article, and the final section presents some conclusions. Fortran
programs, written by the author, were used to calculate the confidence intervals and mean lifetime.

Il. Basic Concepts

In life tests, observation of the time of failure may be prevented for some of the samples by the
occurrence of some other event. These events may be the result of an accident or a planned decision to
terminate testing of the unit before it fails. “Non-failure” events usually are called “losses” or “censoring
times.” It usually is assumed that the failure times are independent of the censoring times. Even though
the resulting data set is incomplete, it is desirable to estimate the proportion, S(t), of items in the
population whose lifetimes would exceed the time ¢ in the absence of such losses.

If all the units run until failure, then the data are called “complete.” If some of the units have not
failed by the end of the test, but the running time for all the unfailed units is the same, the data are
termed “singly censored.” If the running time of the unfailed units is greater than the last failure time,
the data are termed “time censored.” In this case, the number of failures and their times are random, but
not the length of the test. If the running time of the unfailed units is the same as the last failure time,
the data are termed “failure censored.” In this case, the duration of the test and the failure times are
random, but not the number of failures. Time censoring is more common in practice. Failure censoring is
mathematically easier to handle. Incomplete data with failure censoring and time censoring intermixed
are termed “multiply censored.”

The procedures described in this article may not apply to every situation. A careful examination of
the type of data and the approach used to calculate statistical properties of the data is important. Later
in this article, we will also associate with each failure time a discrete variable that labels the mode of
failure. This leads to the complex subject of “competing risk,” into which we will make a brief excursion.
The prospect of multiple failure modes is quite likely for CCRs. They are known to be susceptible to
wear, contamination, fatigue, and leakage of helium gas.

We are interested in the random variable, T, representing the time to failure. Following normal
convention, random variables will be denoted by bold-face type. A random variable is a numerical-valued
function defined on a sample description space. The sample description space is the set of all possible
outcomes of an experiment or trial. In lifetime studies, the outcome is the time to failure of a system or
component. The numerical value associated with the random variable T will be denoted by ¢.

The cumulative distribution function is the probability that the lifetime T is less than or equal to ¢,
and is also the integral of the probability density function f(¢),

Pr{T <t} = F(t) = /Ot f(w)da (1)

The survivor (or reliability) function is the probability that the lifetime is greater than or equal to ¢ and
is given by

S() = Pr{T>1} =1— F(t) = /too f(w)dz 2)



The mean time to failure (MTTF) is expressed in terms of the survivor function by
MTTF = = / S(t)dt (3)
0

Another useful function for lifetime analysis is the hazard function. It specifies the instantaneous rate of
failure given that the component or system has survived to time ¢. It is a conditional probability and is
given by

b = i DS TS AT f(0)

At—0 At S(t) (4)

The connection with the physical causes of the lifetime may be more readily tied to the hazard function
than the cumulative probability distribution function or survivor function. For example, a failure rate
that increases with the age of the CCR usually indicates that the failures are due to wear. A failure rate
that decreases with age usually indicates that the failures are due to manufacturing defects.

Another useful function, especially when there are multiple causes of failure, is the cumulative hazard
function, given by

lIl. The Product-Limit Estimate of the Survivor Function

The estimate used in this article is called the product-limit estimate. It is a limiting case of the
actuarial estimate. Actuarial methods are best suited for large samples. The method described here is
better suited for small samples, since individual, rather than grouped, failure times are used. We assume
there are N individuals under study and associated with each is either a lifetime, ¢;, or a loss time, Lj;.
Lifetimes correspond to actual failures, and loss times correspond to removal of the unit for reasons other
than failure. The time scale is broken up into a number of intervals (¢;_1,%¢;). For each interval, one
estimates the proportion of units alive just after time ¢;_; that survive to just beyond time ¢;. The
product-limit estimate of the survivor function is built up as a product. Each term in the product is
a conditional probability of survival. The conditional probability used in the product-limit estimate
assumes no functional form. If the number of units remaining at risk just after ¢;_; is n;, and there are
d; deaths in the interval (¢;_1,¢;), then the conditional probability of survival to time ¢;, given survival
to time ¢;_1, is

The survivor function is built up as the product of these conditional probabilities:

sw=[[ o= ] 2% ()

n
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If a unit is removed for reasons other than failure, a death, d;, is not recorded, but the number of units
at risk, n;, is affected. If there are no censored observations (losses), the survivor function can be simply
estimated by

N number of lifetimes > ¢

S(t) = ~ (8)

This is a step function that decreases by d/N if there are d failures at time ¢. This is a very intuitive
definition of the survivor function. The product-limit estimate is discussed in detail by Kaplan and Meier

[1].

IV. Confidence Interval Estimate of the Survivor Function

Section III discussed the evaluation of the survivor function without assuming any particular form for
the distribution and also allowed for removal of units under test without failure. Equation (7) provides a
single estimate. However, this estimate is of limited value without some measure of its uncertainty. The
uncertainty of the estimate is provided by a quantity called a “confidence interval.” It is calculated from
the sample data. A confidence interval for the survivor function can be calculated for any time t,. It
consists of a lower limit and an upper limit, and these limits depend on the confidence level associated
with the interval. We will denote the interval by [Sr.(¢,), Su(t,)]. Its meaning is best thought of in terms
of its “coverage.” Coverage probability reflects the uncertainty in the sampling procedure; 90 percent
coverage means that if many samples are taken, or lifetime experiments conducted, 90 percent of the
calculated confidence intervals will cover the true parameter. This is not the same as saying that the
true value of the parameter has a 90 percent probability of lying within the calculated interval. That
probability is either zero or one. It either does or does not lie within the interval. Intervals help the
experimenter decide if enough data have been taken.

The reason for estimating intervals rather than points is to have some guarantee of capturing the
parameter of interest. Nelson [2] also discusses some reasons for calculating confidence intervals. They
are usually wider than the experimenter might expect. This can help prevent the experimenter from
believing the estimates are closer to the true value than they really are. In fact, the uncertainty may
actually be greater than the confidence interval indicates. The confidence interval calculation assumes a
random sample and assumes the sample represents the population of interest. If these assumptions are
not strictly true, the results are more uncertain than the calculations indicate. Confidence intervals can
be computed for any level of confidence. Common levels are 90, 95, and 99 percent.

The problem of calculating a confidence interval can be quite technical. It is closely related to another
topic in statistics, that of hypothesis testing. In general, every confidence interval corresponds to a
hypothesis test and vice versa. We will not cover this matter in any detail, but only outline the origin
of some of the formulas to be presented. Depending on the type of censoring, an exact method may be
found, and other times large sample approximations are necessary. Later in this section when we discuss
censored data, we will discuss a powerful technique for calculating confidence intervals for moderate to
large samples based on the likelihood-ratio test.

We begin by presenting an “exact” confidence interval calculation for the case of complete data. It
is exact in the sense that the procedure holds for any number of units under test. The case of complete
data is important in its own right, but it also serves as a means of testing formulas developed for censored
data. In the limit where the number of censored items falls to zero, the confidence interval for censored
data should closely approximate the confidence interval for complete data for reasonably sized samples.



A. Uncensored (Complete) Data

If the data are uncensored, techniques based on the binomial distribution can be applied. The binomial
distribution is based on the concept of a Bernoulli trial. A Bernoulli trial is an experiment with exactly
two possible outcomes, one and only one of which must occur. A random variable X with a Bernoulli
distribution can take on the value one or zero. The probability of success (z = 1) is usually denoted p, and
the probability of failure (x = 0) is (1 — p). Many experiments can be modeled as a sequence of Bernoulli
trials. It’s important to note that our calculation for the interval is based only on survival/non-survival
at time t,. We do not use the actual times to failure that may have been observed earlier, only their
number. It turns out that for the binomial distribution ¥ = >~ X, is a sufficient statistic for p. This
means that the total number of 1’s in the sample, that is, the number of survivors at time t¢,, contains
all the information about p that is in the data. Other features of the data, such as which z; are equal to
one and which are equal to zero, contain no additional information about p.

Therefore, a confidence interval can be calculated based on the random variable ¥ = > X;. It also
follows a binomial distribution. That is, its probability density is given by

o= (3 )pra-p 0

Let the number of observed surviving units at time ¢,, based on the sample, be given by y.. The probability
mass function f(Y") is easily calculated for any values of n and p and generally has a bell shape. As the
probability of survival increases, the bell-shaped curve will move towards the right, indicating a larger
number of survivors. The lower limit on the survivor function is the smallest value of p such that the
probability that Y > y,. is equal to some small number, usually called «. This implies

n

Prvzud= 3 (F)ra-nr —a (10)

Y=y

The summation in Eq. (10) can be written using the incomplete beta function, I,,. That is,
- o n—i
> (i)p (1=p)"" = Ly(ye;n — ye + 1) (11)
1=Ye
The smallest value of p such that

L(Yesn—ye+1) =« (12)

is the lower confidence limit on the survivability, i.e., S1.(t,) = p. For the upper confidence limit on the
survivability, we need to find the largest value of p such that

pr(y <ud =3 ()0 -pri=a (13)

=0

Since the total area under the probability density function is unity, we can rewrite Eq. (13) in terms of
the incomplete beta function:



- LA n—i
Pr{Y>y.+1}= > (i)p(l—p) = L(ye+1Ln—y)=1-a (14)
i=yc+1

Therefore, the value of p that satisfies Eq. (14) is the upper confidence limit, i.e., Sy(t,) = p. Fortran
subroutines available in [3] can be used to evaluate the incomplete beta function. An example of this
calculation is presented in Section VII.

By way of introduction, the same problem can be solved using the likelihood-ratio technique. The
procedure is to construct the maximum-likelihood function given a hypothesis, called H,, and a suitable
alternative hypothesis, called Hy. Then form the ratio, Lg, of the two functions,

L(l‘l e .’I,‘n|Ho)

L =
BT L(wy - an|Hy)

(15)

Here L(z1,---x,|H,) and L(z1,---x,|H;1) are the maximum-likelihood functions of the sample when
the hypotheses H, and H;, respectively, are true. Then for moderate to large samples, the quantity
A = —2In(LRg) follows a x? distribution with one degree of freedom. This is a powerful result from the
theory of statistical inference.

For the problem at hand, let the hypothesis H, be that S(t,) = p,, and the hypothesis H; be that

S(to) = p;p # po- The likelihood function for H, is given by L = f(x1 -+ Zp;po) = poZ o (1 —po)”fz i,
By the hypothesis, p is restricted to be equal to p,. The likelihood function for Hi is given by L =

flxy - xp;p) = ;62 i (1—13)"72 ¥i, where p is the maximum-likelihood estimate of p without restrictions.
The likelihood ratio is

_ pOZ (1 = po)" 2
T

Lr (16)

Taking the logarithm of both sides leads to

A=—21nLR:2(Zmi)ln<£)+2(n—2mi)ln((1;ﬁ) (17)

Po 1- po)

Or, since p = (> x;)/n, we can write

p

A=-2InLg = 2npln (—) +on(1 — f)in =P

L= 7o) (18)

o

Under H,, A is distributed as X%1) in large samples, and an approximate « confidence interval for p
consists of all values p, such that A < X?l),a' The quantity X%l),a is the ath quantile of the chi-square
distribution with one degree of freedom. A comparison of this approach and the binomial approach is
presented in Section VII. The results are similar.



B. Censored Data

If the data are censored, the binomial distribution approach is not valid. We will follow Thomas
and Grunkemeier [4] and present a technique for calculating confidence intervals for S(t,) based on the
likelihood-ratio method discussed above. We are testing the hypothesis H, : S(t,) = S, versus the
hypothesis Hy : S(t,) # S,. The likelihood ratio, Lg, is given by the ratio of the constrained maximum-
likelihood function, L., to the unconstrained maximum-likelihood function, L,,:

L
A=-2InLr=-2In (L_c> (19)
For the product-limit estimate, L is given in general by
k
—d;
R (20)

For the unconstrained case, p; = p; = 1 — (d;/n;), as mentioned previously in Eq. (7). L. is the same
likelihood function subject to the constraint that

stt) = I »i=5 1)

A Lagrange multiplier, A, is used to build the constraint into the likelihood function. This leads to the
likelihood function

k
n;—d;
]:1

where the p; satisfy

d;
5. — =11 23
d.
ﬁj: __]7 J:l+17ak (24)
j

where [ is defined by t; < t, < t;+1. The ratio given in Eq. (19) is

:222[njln(lJr%)—(nj—dj)1n<1+njidj>] (25)

To get an a confidence interval for S(¢,), we need to determine the set of all S(¢,) such that A < X%l),a
This can be accomplished by finding the set of all A in Eq. (25) that make A < X%l),a' These A values

form a closed interval [Ap, Ay] where A, < 0 < Ay. Once these are found, the confidence interval for
S(t,) is of the form [SL(t,), Su(t,)], where 0 < SL(t,) < Su(t,) < 1. They are given by



Silto) = 11 (1 T j—i)\L)

i=1

(26)

Su(to) ﬁ (1 - miﬁ)

i=1

A Fortran program for performing this calculation has been written. An example is presented in Sec-
tion VII.

V. Restricted Mean Lifetime

Up to now we have focused on the calculation of the survivor function and an associated confidence
interval. Oftentimes one is interested in a single number characterizing the behavior of a unit. As
discussed in Eq. (3), the mean lifetime can be calculated if the survivor function is known. The product-
limit estimate of the mean lifetime is defined as the mean of the product-limit estimate of the lifetime
distribution, where the symbol “"” denotes the product-limit estimate. That is,

i = /0  Syat (27)

If the life testing is such that not all the units have failed, one may wish to estimate the mean life limited
to a time L, where L is chosen by the investigator. In this case, the restricted mean lifetime defined by

L
fip = /O S(x)dx (28)

may be given along with the estimated value of the survivor function at time L. Again, to be useful,
some estimate of the uncertainty of the lifetime is necessary. An estimate of the variance (the square of
the standard deviation) of the restricted mean lifetime is given by [5]

V(i) = Y —a (29)
ar(fip) = —
- i a(ng = dj)
where
Aj = (tj1 —t)5(t5) + (tjrz — tj41) (1) + -+ (L — ) S(tm) (30)

with ¢,, being the largest observed lifetime less than or equal to L. An example is presented in Section VII.

VI. Multiple Causes of Failure

If the system under study is capable of failing from several causes, then the problem is more complex.
In statistical analysis, this is often referred to as the “competing risks problem.” If the system is capable
of failing from 3 different causes, then there are 3 random variables, Th, T5, and T3, that correspond to
the lifetime due to failure associated with causes 1, 2, and 3. In a series-type system, any one of the causes
is sufficient to bring down the system. In such a case, only the minimum of {7}, T5, T3} is observed.



We follow the approach presented in [5]. We associate with each unit under test a pair of numbers
(T, C), where the continuous random variable T is the lifetime and the discrete random variable C'is the
mode of death. C'is assumed to take on one of k different values.

The joint distribution of T and C can be obtained using cause-specific hazard or survivor functions,

Prit < T<t+At,C=j|T>t) fi(t)

hi(t) = Jim, At =50 31
S,(t) = P{T >t C=j} (32)

When there is no censoring, estimates of the survivor function for the jth failure mode, S;(t), are given
by an obvious generalization of Eq. (8),

N Number of lifetimes with 7' >t and C = j
55(0) = N (33)

When the data are censored, the cause-specific survivor function, 5} (t), is given by

N di; A dji ng —d
S =3 D)= #( I = k) (39
. iti>t " \kitp<t; k

Ci=j Ci=j

When evaluating Eq. (34), it’s easiest to start at the earliest failure (or loss) time and calculate S (the
product terms) for all times. Then starting at the last failure (or loss) time, work your way back to the
beginning, calculating the sum. An example is given in Section VII. If the data are complete, then

S(t) =Y 85(1) (33)

=1

If the data are censored, S(t) will be less than the sum of the S;(t) terms.

The S'j (t) are useful for estimating probabilities related to the cause of death. For example,
Pr{C = j} = S;(t = 0) (36)

If there is censoring, it is better to redefine S;(0) by

A S;(0)
S;(0) — = 37
(0) .50 (37)
For general time, ¢, we use
_ _ 55
Pr{C=jT>t} = 30 (38)



If it is desired to plot cause-specific cumulative hazard functions, we first calculate a pseudo-survivor
function, again using a product-limit estimate. It is given by

A n; — dj;

G;(t) = H Tj (39)
it <t ¢
Ci=j

where d;; is the number of individuals dying from cause j at ¢;. Then the cause-specific cumulative hazard
function is given by

H;(t) = —In (G;(1)) (40)

These hazard functions are useful for examining the relative behavior of the different causes of death. They
show how the relative risk of failure from different causes varies with time. The composite cumulative
hazard function is given simply by the sum of the cause-specific hazard functions. That is,

A(t) = ~In ($(0)) = Y A (1) (41)

j=1

It is easier to assess from such plots whether the hazard function is constant, increasing with time, or
decreasing with time. The cumulative hazard function, H (t), is linear with time if h(¢) is constant. It is
convex upward if h(t) is increasing with time and convex downward if h(t) is decreasing with time. The
cumulative hazard function also serves to smooth the data.

VIl. Examples

We now illustrate the above formalism with an example. Consider 24 CCRs put on life test. Imagine
the refrigerators were run until they all failed. Let the failures times in thousands of hours be given by
2.0, 3.25, 4.1, 5.6, 6.05, 8.01, 8.9, 9.25, 9.4, 9.8, 10.1, 10.6, 12.0, 12.5, 12.9, 13.3, 13.6, 14.0, 15.0, 15.5,
16.9, 18.0, 18.5, and 20.0. These appear in column 1 of Table 1. The survivor function is calculated
using Eq. (7), and the cumulative hazard function is calculated using Eq. (5). The survivor function
and cumulative hazard function are shown in the columns labeled S; and Hj, respectively. A plot of the
survivor function is shown in Fig. 1. (For clarity purposes, the line segments are omitted in Fig. 5.)

Next consider the case where the failures times are 2.0, 3.25, 5.6, 6.05, 8.01, 8.9, 9.25, 9.8, 10.1, 12.0,
12.5, 12.9, 13.3, 15.0, 15.5, and 16.9. Let the censored (loss) times be 4.1, 9.4, 10.6, 13.6, 14.0, 18.0, 18.5,
and 20.0. That is, for one reason or another, the life tests on these units were stopped, but the unit was
still running when the test was terminated. The survivor function and cumulative hazard function are
shown in Table 2 under the columns labeled S5 and Hs, respectively. A plot of the survivor function is
shown in Fig. 2 as the red circles. This is to be contrasted with the behavior seen if the censored data are
not used. The survivor function and cumulative hazard function are shown in Table 3, and the survivor
function is plotted in Fig. 2 as the blue squares. Ignoring the censored data, especially in the latter stages
of the life test, makes a substantial error.

Confidence intervals can also be calculated for the data shown in Table 1 using some computer programs
developed by the author. We can calculate lower and upper confidence limits for the survivor function.
Suppose we are interested in 90 percent confidence limits at 9,000 hours, 13,000 hours, and 16,000 hours.
They are given in the first two rows of Table 4, calculated using Eqgs. (12) and (14). The last two rows
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SURVIVOR FUNCTION S4(t)

Table 1. Survivor and cumulative hazard functions

for 24 units with complete failure.

Failure
time, St H,
kh
0.0 1.0 0.000
2.0 0.958 0.043
3.25 0.917 0.087
4.1 0.875 0.134
5.6 0.833 0.183
6.05 0.792 0.233
8.01 0.750 0.288
8.9 0.708 0.345
9.25 0.667 0.405
9.4 0.625 0.470
9.8 0.583 0.540
10.1 0.542 0.612
10.6 0.500 0.693
12.0 0.458 0.781
12.5 0.417 0.875
12.9 0.375 0.981
13.3 0.333 1.100
13.6 0.292 1.231
14.0 0.250 1.386
15.0 0.208 1.570
15.5 0.167 1.790
16.9 0.125 2.080
18.0 0.083 2.489
18.5 0.042 3.170
20.0 0.000 —
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Fig. 1. Survivor function corresponding to

the data in Table 1.
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Table 2. Survivor and cumulative hazard functions for
24 units, 8 of which are censored units.

SURVIVOR FUNCTIONS S,,S3

Failure Loss
time, time, So Ho
kh kh
0.0 — 1.000 0.000
2.0 — 0.958 0.043
3.25 — 0.917 0.087
— 4.1 0.917 0.087
5.6 — 0.873 0.136
6.05 — 0.829 0.188
8.01 — 0.786 0.241
8.9 — 0.742 0.298
9.25 — 0.698 0.360
— 9.4 0.698 0.360
9.8 — 0.652 0.428
10.1 — 0.605 0.503
— 10.6 0.605 0.503
12.0 — 0.555 0.589
12.5 — 0.504 0.685
12.9 — 0.454 0.790
13.3 — 0.404 0.906
— 13.6 0.404 0.906
— 14.0 0.404 0.906
15.0 — 0.336 1.091
15.5 — 0.269 1.313
16.9 — 0.202 1.600
— 18.0 0.202 1.600
— 18.5 0.202 1.600
— 20.0 0.202 1.600
1.0 T T T T | T T T T T T T
ke ]
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Fig. 2. Survivor functions for the data in
Tables 2 and 3.
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Table 3. Survivor and cumulative hazard functions for the
data of Table 2, when the censored data are ignored.

Failure
time, S3 Hs
kh
0.0 1.000 0.000
2.0 0.938 0.064
3.25 0.875 0.134
5.6 0.813 0.207
6.05 0.750 0.288
8.01 0.688 0.374
8.9 0.625 0.470
9.25 0.563 0.574
9.8 0.500 0.693
10.1 0.438 0.826
12.0 0.375 0.981
12.5 0.313 1.162
12.9 0.250 1.386
13.3 0.188 1.671
15.0 0.125 2.080
15.5 0.063 2.765
16.9 0.000 —

Table 4. Confidence limits of 90 percent for S(t) at 9,000, 13,000,
and 16,000 hours for the complete data of Table 1.

Confidence
9,000 h 13,000 h 16,000 h L
limits
0.521 0.211 0.059 St [using Eq. (12)]
0.854 0.563 0.342 Su [using Eq. (14)]
0.512 0.202 0.056 St [using Eq. (18)]
0.862 0.574 0.346 Su [using Eq. (18)]

of Table 4 give calculated upper and lower limits on the survivor function using the likelihood-ratio
method and Eq. (18). The two approaches agree rather closely.

In order to get a better feeling for what these confidence intervals mean, consider the complete data
of Table 1 at 13,000 hours. At this point in time, there are 9 survivors. If we plot the binomial prob-
ability mass function for p = 0.211 (see Table 4), we get the bar chart shown in Fig. 3(a). The area
under the curve for 9 or more survivors is 0.0492, very close to 0.05. This corresponds to Eq. (10).
If we plot the binomial probability mass function for p = 0.563 (see Table 4), we get the bar chart
shown in Fig. 3(b). The area under the curve for 10 or more survivors is 0.95. This corresponds
to Eq. (14). Finally, we calculate the upper and lower 90 percent confidence limits for the survivor
function for the censored data of Table 2 using Eqgs. (25) and (26). The results are shown in Table 5.

13



PROBABILITY MASS FUNCTION

PROBABILITY MASS FUNCTION

0.20

0.15

0.10

0.05

0.00

0.20

0.15

0.10

0.05

0.00

P S R I T I I I B
2 4 6 8 10 12 14 16 18 20 22 24
NUMBER OF SURVIVORS

2 4 6 8 10 12 14 16 18 20 22 24
NUMBER OF SURVIVORS

Fig. 3. Probability mass function for (a) p = 0.211 and (b) p = 0.563.
There are 24 units under test.
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Table 5. Confidence limits of 90 percent for S(t) at 9,000, 13,000,
and 16,000 hours for the censored data of Table 2.

Confidence
9,000 h 13,000 h 16,000 h L.
limits
0.578 0.284 0.120 St [using Egs. (25), (26)]
0.870 0.629 0.455 Su [using Egs. (25), (26)]

A mean-time-to-failure example will be presented next. For the data of Table 1, calculating the mean
time to failure using Eq. (28) and simply calculating the average of the failures times give the same
result. The mean lifetime is 11,219 hours. The variance of the lifetime using Eq. (29) is 951,015 hours?,
corresponding to a standard deviation equal to 975 hours. This same result can be obtained by using the
standard formula

T‘i - Tmean 2
variance = Z (N—Q) (42)

%

For the data in Table 2, which correspond to censored data, the mean time to failure using Eq. (28) is
12,576 hours. The variance using Eq. (29) is 1,296,410 hours?, corresponding to a standard deviation of
1,139 hours.

Finally, we examine a multiple-failure-mode example. For this case, we take the same data used in
Table 1 and assign a failure code for each observed failure time. The data are shown in Table 6. In this
example, we assume there are only 2 modes of failure. The failure mode is given in the column labeled C.
The column labeled S contains the product-limit estimate of the survivor function without regard to the
cause of failure. It is calculated using Eq. (7). The cause-specific survivor functions are calculated using
Eq. (34). In this case, the table is generated starting at the bottom. Figure 4 shows plots of the 3 survivor
functions. It is clear that failures due to mode 1 steadily reduce the number of operating refrigerators until
about 14,000 hours. Failures due to cause 2 do not begin to reduce the number of operating refrigerators
until about 7,000 hours, and then the decrease is roughly linear out to about 18,000 hours. The percentage
of failures due to cause 1 is given using Eq. (37) as S1(0) = 0.36/(0.36 + 0.48) = 0.43. Similarly, the
percentage of failures due to cause 2 is given by S3(0) = 0.48/(0.36 + 0.48) = 0.57. These numbers agree
with the fact that 7 of the 16 failures are due to cause 1 and 9 of the 16 failures are due to cause 2.

The cause-specific pseudo-survivor functions and cause-specific cumulative hazard functions are cal-
culated using Egs. (39) and (40), respectively. The total cumulative hazard function is calculated using
Eq. (41). The 3 cumulative hazard functions are plotted in Fig. 5. The cause 1 cumulative hazard function
is slightly convex upward to about 13,000 hours, indicating a slightly increasing rate of failure with time.
The hazard rate of cause 2 is steadily increasing after about 7,000 hours. The total cumulative hazard
function alone shows a marked change in slope at about 9,000 hours. This can often be an indicator that
another failure mode is becoming dominant. This is not so apparent from the total survivor function
shown in Fig. 4. The total cumulative hazard function is the sum of the cause-specific cumulative hazards,
even if the data are censored.
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Table 6. Survivor functions (total and cause-specific), pseudo-survivor functions, and cumulative
hazard functions (total and cause-specific) for failure data with 2 modes of failure.

Fig. 4. Cause-specific and total survivor
functions for the data in Table 6.
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Fig. 5. Total and cause-specific cumulative
hazard functions for the data in Table 6.



VIII. Conclusion

The problem of evaluating lifetime data for components of the proposed large array of microwave
receiving stations was discussed. We presented a non-parametric analysis, known as the product-limit
estimate, that applies to complete and censored data. We chose methods that do not require large samples
in general. The calculations of the product-limit estimate of the survivor function, cumulative hazard
function, confidence intervals, and mean time to failure were presented. A brief discussion of data with
multiple causes of failure was presented. This included cause-specific survivor functions and cause-specific
cumulative hazard functions.
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